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EFFECTIVE RIGIDITIES OF COMPOSITE PLATES* 

A.G. KOLPAKOV 

A problem of constructing the effective rigidities of composite plates, i.e.ofthe 

rigidities ensuring that the solutions of the initial problem of the three-dimens- 

ional theory of elasticity for an inhomogeneous body are close to a solutionofsome 

problem in the theory of quasihomogeneous plates, is investigated. The homogeniza- 

tion method /l-S/ is used to obtain the solution. The theory of plates employed 

below has the following significant characteristic feature, namely the fact that 

mechanical hypotheses are used to execute the passage from the three-dimensional 

problem of the theory of elasticity to the two-dimensional problem of the theory of 

plates. The methods used in the passage indicated explain the discrepancies occur- 

ring in various methods of constructing the effective characteristics. 

1. First we consider the problem of stability of plates satisfying a priori the 

Kirchhoff-Love hypotheses. The flexure of such plates was studied in /5/. Let us assume for 

definiteness that an inhomogeneous plate is clamped rigidly and the stresses ho,,, hr, ho,, act 

in its plane. The stresses are such, that increase in the value of the parameter h leads to 
loss of stability. The equation describing the instant when the plate loses its stability, 

has the form /6/ 

The elastic constants Dand Y depend on the parameter E<I (absolute or relative size of the 

inhomogeneities), In many cases this relationship has the form 0; Y =D,v (Z/&)/l-S/. The 
stresses cllr r,upp in the plane of the plate are obtained from the solution of the plane 
problem of the theory of elasticity for an inhomogeneous body, and also represent rapidly 

oscillating functions which depend on the parameter e. We shall study the asymptotic behav- 
ior of the smallest in module eigenvalue of the problem (l.l), (i.e. the smallest critical load) 
as a-+0. 

Note 1. Problems of averaging the differential operators were considered by a number of 

authors, e.g. in /l-S/. In particular, /7,8/ dealt with the certain problems of averaging 
of spectra. The results of the above papers imply that the averaging, which is regarded in 
mechanical sense as a comparison of the composite material with another homogeneous material 
with nearly identical mechanical behavior, has a corresponding mathematical concept of G. 
limit of the operators /9,4/, or of the r-, G-limit of the functionals /7,9/. In particular, 
when the mass forces are arbitrary, the displacements of the initial and averaged bodies are 
nearly equal if and only if the averaged body uses the coefficients of the G-limit operator 
as the elastic characteristics (this follows, after slight modifications, from/g/). The author 
of /lo/ notes that under the above conditions the elastic deformation energies of the initial 
and averaged body are nearly equal, and this justifies the restrictions imposed below on the 
operators of the problem (1.1). 

The problem (1.1) is conveniently studied using an abstract formulation. Let the follow- 
ing linear, self-conjugate and bounded uniformly in E operators be given: 

Le, L : H,om (Q) + Hz-” (Q) m, k E fi 

M,, M : Hz* (Q) -+ Hz-’ (Q) k < m (1.2) 

Let also a number C> 0 exist such that for every 'p belonging to Hzorn (Q)we have <L,cp, cp>, >/ 
~11~ llm2(<,>,r ll fin denotes the pairing operation and norm in Ha”“(Q)) and MefO. 

Proposition 1, If the sequence of operators 
tion is given in /4/j and for every 'p E Hzok(Q) 

L, G-converges to operator L (its defini- 

1 h, ) + 1 h, I. Here & 
we have Macp+ Mcp in H,-“‘(Q) with M+O, then 

is the smallest in module eigenvalue of the problem 
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L,f = WfEf 
(2. ,’ 

and h, is the smallest in modulo eigenvalue of the problem 

Lf = hMf 

PrOOf. Consider the following problem on the space //?Ok(Q) : 

Li.4) 

f =- AL,-'M,! (1.5) 

We shall show that (1.5) and (1.3) are equivalent. According to /ll/, when conditions (1.2) 
hold, then the operator L,-' : H,-m (Q)+com (Q) exists and is bounded uniformly in E . Therefore, 
from the inclusion 1f20" (Q) c I/,0" (Q), t/,-k (Q)c 11~-~ (Q) and the standard inequalities connecting the 

normsofthese spaces it follows that the operator from 
H,-h- (Q) to H&"(Q) 

L,-' is defined as an operator acting 
and is also uniformly bounded in E /ll/. Then the problem (1.5) is form- 

ulated correctly and therefore equivalent to (1.3). 

Let us denote by ff,)the eigenfunctions corresponding to the smallest in moduloeigenvalu- 

es (clearly, they can differ from each other only in sign). By virtue of the uniform bound- 
edness in e of the operators M, (condition (1.2)) and L, (see above), we have the following 
estimate for/ ?.,I 

(1.6) 

with the constant Kindependent of E. The first equality in 11.6) defines the eigenvalue of 
the problem (1.3). We further introduce a family of functions (gel = (h,-lf,:llfEllkL_ 1). The last 

equality in the formula for I&} can always be obtained by normalizing the eigenfunctions. By 
virtue of the definition of (g,} we have c= L,-'MJE and from this we find, using the fact 
that the operator L,-' , as the operator acting from Hz-*(Q) into H,Om (Q) , is bounded unifomlly 

in F /ll/, that ll&llm < K,< m with constant K, independent of E. Then the sequence {g,l will 

be weakly compact in Hsom (Q) /ll/ andbyvirtueofthe fact that k<m, compact in Htoh (Q) /12/. 
The sequence (&-I) will be compact in R by virtue of (1.6). Then we can select from the sequ- 

ence (A,-',/,\ a converging sequence (X,.-l, f,.). Let i,.-1 -P~,F~, +g, in HzO" (Q). By definition of 

AE' & we have 

hi?&. = l,;?Mr,gr. (1.7) 

From the unifom, in F continuity of the operators M, we find that Ale,&?,, - g,)-0 in II,-' (Q) '__ 

HZ-~ (Q) and M,.g, - M& in H,-"'(Q) by virtue of the proposition, therefore Me, 4, -@lg, in HI-"'(Q) 

Then by virtue of the uniform in E , continuity of L,-Ias the operator acting from HLdrn (Q) to 

HzO"(@ (see above) and the G-convergence of the sequence of operators L, and L , we obtain 
the equation for 

PO<, = L-'M& (1.8) 

Next we shall show that g,iO. Since fl go lb = lim II RE. lk = lim 1 f,.f&. Ilr = lim &.*-', it is suffic- 

ient to show that p,,#O. The operators Lc and M, are selfconjugate, therefore L,-L~M, is 

also selfconjugate and we have for it a variational principle, /11,12/ according to which 

Now, passing to the limit at fixed 'p we obtain 

(1.9) 

Since L-l, MOO, it follows from (1.9) that ~I~#O. Let us now put i., r PO-' and I0 =- h,g,. 

Clearly, l,.+fo in Hfk (Q). From (1.8) and g,,iO,~,,#O it follows that 1, and f. are, respect- 

ively, the eigenvalue and the eiqenfunction of the problem (1.4). Moreover, 

h,._' -c,'O = X0-L (1.10) 

By virtue of (1.9) ).0 is the eigenvalue smallest in module. There can be not more than two 

such numbers (disregarding the multiplicities) and they can differ from each other only in 

sign. It follows therefore that the sequence (h,) can have not more than two limit pointsequal 

in modulo, and this implies, with the compactness of (h,) taken into account, that Ii,,I-+Ih,I. 

Note 2. The result stating that only the moduli of the least critical loads convergecan- 

not, in general, be improved. We can illustrate this using the problem of stability of a 
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plate under shear, with a spectrum symmetrical about the zero. In the case of homogeneous 

plates the result can be sharpened just by considering the class of subcritical states with 

positivie definite subcritical stress tensors U,,. T,%. In the composite plates however, a 

subcritical state of general form occurs, and the above method becomes inapplicable. Below 

we shall show that the sufficient condition for convergence of the smallest critical loads is, 
that the limiting subcritical state described by the operator M by sign-definite.. 

Proposition 2. If, under the conditions of proposition 1, the operator M is sign- 

definite, then h, --f h,. 

Proof. According to (1.9), (1.10) any converging subsequence of the sequence ($.f,} can 

have,as the limit of the first argument, only the eigenvalue smallest in modulo. In the case 

when M is sign-definite, such a numer is unique (disregarding the multiplicity) and this im- 

plies, by virtue of the compactness of (Q. as was shown in the proof of proposition 1, that 

A, * A,. 
Let us now confirm that the operators defined by (1.1) satisfy the conditions (1.2) when 

we put m=2 and k> 1.5. When w>C>D, ~-v>:C>O , the operator L, is positive de- 

finite /13/, bounded uniformly in s, and obviously self-conjugate. Consider the operator M,. 
We have 

(1.11) 

The last two inequalities follow from the continuity of the inclusion of Hz"(Q) in H,O’(Q) 
at n > 1.5 /12/. This implies that for k > 1.5 the operator M,defined by (1.1) is bounded 

uniformly in s, provided that the following condition holds: 

I II oii Ilo I < 4 < 00 (1.12) 

where the constant K, is independent of E. Woreover, the operator M,is clearly self-conju- 

gate. 

Note 3. We are dealing with the case when the subcritical stresses en~,e22 in the 

plane of the plate are found from the solution of the first boundary value problem of the 

plane theory of elasticity for an inhomogeneous body 

APE = (1 or 1F sijE = a& (defLi& (1.13) 

$lau=~S" or 0 

The problem (1.13) was studied in /l-33/, and their results show that, in particular, 

the stresses which are the &,-gradients of the solution /4/ converge weakly in L*(Q) to the 
stresses IX] determined from the solution of the problem strongly G-limited with respect to 

(1.13). This enables us to construct the operator M, and we note that this implies that the 

condition (1.12) is fulfilled. 

PrOpOSitiOn 3. If (Jll = ulle, t = ume = uzlE7 U12 = U2zE, then the operator M is 

Proof. We have for f E Hzoh‘ (Q) C H,"'(Q) 

Let us introduce the set F= (v:v= VI+, ifr&< l)C La(Q). By virtue of the inclusion theorem /12/ 

F is compact in L*(Q) for any q<=. The equation (1.14) can be rewritten in the form 

I/ MEf - Mi II-2 = gp 1 ((SijE - Oii)’ i, il#j)o 1 (1.15) 

We introduce into Fa finite "&mesh" /ll/, which is possible since F is compact in hr(Q). 
Since aij'-oi, weakly in b(Q) I we find that the right-hand side of (1.15) tends to zero as 
E*Oon the B-mesh. The continuity of the operators III, uniform in E now implies the converg- 
ence to zero on the whole set F, and this completes the proof. 

Following the same procedure we can deal with the case of a hinged and mixed (rigid and 
hinged) support of a plate. In the first case the solution of (1.1) is sought on the set 5 
representing the closure of the set (f~C*(@!(r)= 0, ZE dQ) on the norm fl;l(O) /13/. Here the 
operator L, is positive definite uniformly in E, provided that w>L’>D, i--v>c>O which 
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can be proved following /13/. From this it follows that all previous results cdn he tran--- 
ferred to this caSe without any changes, and the same applies to the case of mixed support. 
We note that in the case of a hinged support of a plate the rapidly oscillating elastic con- 
stants appear in the boundary conditions, namely in the condition for the moments. In thi S 
case the boundary condition becomes averaged, i.e. if the limit solution is Smooth, then the 
boundary condition for it is obtained by integration by parts in the equation ,i.ir,+)r i. ,~ Al ‘I 
T>, obtained from the variational principle, for every CL' ~/l~(lz(Q), We see here that the same 
boundary conditions can be obtained by integrating by parts the equation .I.~(., ~1,~ 0, since t.!le 
expression (hl~?,tp,, does not yield on i'integrals wrth respect to aQ. 

The above argumentation was carried out for plates of constant thickness /I occupying a 
constant region Q. The absolute dimensions of the inhomogeneities tend here to zero, and 
this case is characteristic for the composite materials /S/. 

In a nuder of problems the Study of the relative sizes of inhomogeneitiesisofinterest. 
Let US denote by T and I the characteristic dimensions of the plate and inhomogeneiti.es, re- 
spectively. We pass to the dimensionless variables using the following formulas ( a prime 
denotes a dimensionless variable): 

.Y z Z/T, h’ :Z h/T”‘, w = UT. uc’ = lip, U’I’ = iJO 
(1.161 

It can be confirmed that equations (1.13) of the plane theory of elasticty without the mass 
forces, and equation (1.1) with the condition of rigid support, both contain T only in the 
coefficients after the change of variables (1.16). Moreover, if in the initial. variables 
E, Y = P, v” (Z/c), then in the new variables E, v L_ P,@(rl(t/T)~ where E" and y0 denote the functions 
in which the characteristic dimension of the change is equal to unity. In this case the 
relative size of the inhomogeneities E=-:tjT can be taken as the small parameter. 

The above remarkmakes it possible to apply the propositions 1 and 2 to the ribbedplates 
for which the condition of smallness of the absolute rib size leads to contradiction with the 
hypotheses used in the course of deriving (1.1) /6/. The relative smallness of the ribsizcs 
on the other hand, makes it possible to carry out the averaging without contradicting the 
hypotheses of the plate theory /6/ under the condition that the rib width is of the order of 
the characteristic thickness of the plate. 

Note 4. Although the ~-limits exist for a wide class of operators (e.g. for those 
with rapidly oscillating periodic coefficients) /l--5/, the analytic expressions for the G 
limits of the operators of the form il.l), (1.13) have been obtained up to now only for the 
case of uniform distribution of the inhomogeneities /5,4/. 

Example. We consider a rectangular plate reinforced with a system of ribs parallel to 
the 0~~ axis, and hinged. In this case we have D, v = D,Y(zJs); Q = 10, M)x lO,Lj - Let the sub 
critical state of stress in the plane of the plate be determined from the solution of 11.13) 
with the boundary condition O~j'/~j~C," On ay. We shall show below that the proposition 3will 

remain, 
/S/l. 

in this case, in force (see also the analysis oftheproblem of the plate theory in 
The limit state of stress is c.I(~ =: ui'drj and we can establish that 

Here a=&-1)-L and < > denotes the averaging over a period of 
periodic, otherwise i ) denotes the operation of taking a weak 
the formula simplifies and assumes the form 

the functions D and v are 
limit in I+(Q). When \' =- fOllS1 , 

2. Next we consider the problem of determining effective characteristics of the plates 
essentially inhomogeneous across their thickness, to which the Kirchhoff-Love hypotheses can- 

not a priori be applied. In this case we formulate the problem as follows: to construct, 
from the A,-operator of the theory of elasticity of an inhOMOgeneOus body (with mixed bound- 
ary conditions),an operator L of the theory of quasihomogeneous plates such that the solution 
of the first problem (theory of elasticity for an inhomogeneous body) coincides, as s--to , 
with the solution of the second problem (theory of plates) with some prescribed accuracy. We 
shall show that the above problem can be solved by introducing an intermediate averagingstep 
according to the diagram 

&+A->I, 
! 1 
‘L ,! 
UE - z ii-, iu 
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The passage A,+A consists of calculating the G-limit of the sequence Of functionals cor- 

responding to the sequence of operators A, /9/f and A is an operator corresponding to the G- 

limiting functional. we denote by ii the solution of rhe G-limit problem. The passage A -+ L 

is executed as follows. As we shall show below, the operator A exists for a wide class of 

inhomogeneities and has the foml (2.1) in which the coefficients uy)k, are replacedby certain 

homogenizedcoefficients oijhl possessingthepropertiesofelasticconstants (symmetryandposi- 

tivedefiniteness) /14/. The coefficients areindependentof e andcanthereforeberegarded as 

elasticconstants of somequasihomogeneous elasticmaterial. Weproceedas follows:beginning with 

thamechanicalcharacteristicsofthematerialcorrespondingto thehomogenizedcoefficients a,,,l, 

we choose akinematicmodelanduse themethods of/6,15,14/to constructaproblemofthetheory of 

plateswith some operator L. The solution 10 of this problemapproximates u inL,(Q)with required 

accuracy e(h, R)(h is the thickness and!? is thecharacteristic dimension of the plates in the 

plane). 
In order to confirm that the operator L is the required one, it is sufficient to show 

that ii+ii in L,(Q) as E-+O, and, that the operatorA has indeed the properties assigned 

to it. Consider the initial problem describing the composite plate as a solid inhomogeneous 

body 

[dj*l &I*, = fi (2) (2.1) 

& =O on Pu = i3Q, X I--h, h1/2 (2.2) 

(7:jkl (def C&i,) hlnj = 0 on I? 6 = (2 E Q : 33 = fh/2} 
(2.3) 

We assume that the elastic constants aCjk, EL,(Q) and that positive bounded constants C and 

C exist such that C 1 eij I2 > a,&jjekl > c 1 eij I2 for all E and eij = efi. The solution of (2.1) 

- (2.3) is sought on F'-closure of the norm Hz'(Q) of the set of functions belonging to 

em(Q)vanish near the part P, of the boundary /13/. We shall show that the families of 

solutions of the problems (2.1)- (2.3) have, generally speaking, limit points. 

Lemma. The family (ii,} is weakly compact in 1'. 

Proof. It is sufficient to show that (ii,) is bounded in V, and to show this is suffi- 

cient, in turn, to confirm (see e.g. /13/) that for the boundary conditions (2.2), (2.3) the 

Korn inequality holds, the latter implying the required proof. We shall show that any limit 
point of the sequence {UC} is a solution of the G-limit problem. With this in mind, we note 

that the problem (2.1)- (2.3) is equivalent to the problem of minimization ((,) denotes the 
pairing operation in V) 

kEV:J,(t)+ (f,V)-+min, i;EV (2.4) 

J,(v) = t 
s 
&, (def Y)ij(dsfv)k, d? 

Q 

Let us give one test for G-convergence of the functionals in the Marcellini /9/ sense. 
A sequence of functionals JcGconverqes to the functional J if and only if: 

lo. 
J, (ve) - 

For every ?E Irthere exists a sequence {ve}C V such that FE-t7 weakly in V and 
J (9. 

2O. For every sequence (i;,)C 1’ such that V,+V weakly in V, J(T) < 1&1 J,(v,). 

Proposition 4. If ii is a limit point of the family (&}, then ii solves the problem 
of minimization of the functional J(7) +(f,Y) on 1/ 

Proof. Let cc-H weakly in V. The set V is weakly closed (by virtue of the closure 
and convexity /12/), therefore ii belongs to V. Using the feature of G-convergence given 
above, we can write the following sequence of relationships: for any VE V 

where {",I is a sequence determined for the given element v by the condition 1 
0 

. The above 
inequality yields the proof. 

Next we shall show that the G-limiting operator A exists for a wide class of distribu- 
tions of inhomogeneities, and has the properties listed above (i.e. it is an operator of the 
theory of elasticity of a quasihomogeneous body). 
of operators A, with the domain of definition 

We do this by showing that if the sequence 

7 + Hz”(Q) has a G-limit for any q E v, 
then it has a Glimit when regarded as a sequence of operators defined on V, and these 

G-limits coincide. This will solve our problem, since the G-limit of the operators on 
q + Hzol(Q) exists and has the required properties for a wide class of distributions of the 

inhomogeneities (e.g. when conditions of the type N of /3/ hold, see also /l-55/). 
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Proposition 5. If the sequence of functionals J, of the form (2.4) with the domain CJL 
nition (p + H,“(Q) G converges, for any $ belonging to V, to the functional J. then the 

same sequence J, defined on V G-converges to the functional I (also defined on I). 
defi 

Proof. We shall confirm that the test for C-convergence of the functionals ,/C/ is ful- 
filled for the function&s J, and / defined on 1.. Let t%) be a family of solutions of (2.41, 
and ii asolutionofthe problem obtained from (2.4) when Jr is replaced by J. We note that 
since the functional J is defined on iJ+ lf,O~(Q) for all p of I., it is also defined on 1. 
First we show that lim J, (ii~ >J (ii). - To do this we introduce c?~ as the solution of the problem 
of minimization 

QE E ii + If,"'(V) :J,(‘)-t (I, v> --rm,,,, v E a.1 H,O’(Q); fE “* 

By virtue of the inclusion C-t /fl”l(Q)c i; the problem is formulated correctly, both on '1 + 
ifIn’ and on 1;. We have 

Jz (6,) = J, 6,) + A, (il,, q, ~-. iI&) -1 J, (ii, - i&j (2.5) 

‘$ (F, 0) := [ a&p, 

d 
(~k!t@;)~~ (def&d\ 

We shall show that the second term in the right-hand side of (2.5) tends to zero as F _,CJ 
By definition of ii, we find that for any F of V, and in particular for D,E v 

A,(ii,,G,) _= - \E iii,. 

From this we obtain, using the fact that 21, is symmetric, 

‘4, (Ge,$--&) 2 A, (q’q) -Ar (U,, U,) --/p, iiE).-AE(q’ijE) (2.6) 

Further, by virtue of the G-convergence of J, and J on ii+ i~;bl(Q) /7/, we have 

ijC +ii weakly in C. J, (E,)+ J (ii) (2.7) 

The last limit of (2.7) implies .4E (o,, fi,) 11 (ii. ii) (here we have used the fact thattheoperator 

A has the form (2.4) with coefficients axjbi; the form of ;i is determined in the samemanneras 

that of AC). Applying (2.7) to (2.6) we obtain the required relationship, since, what was 

said before implies that the limit of the right-hand side of (2.6) is equal to ;f,ii-A (ii,ii) 
0. The last equation follows from the fact that ii is a solution of the G-limiting problem. 

Passing now in (2.5) to the lower limit and taking into account (2.7), we obtain 

&J,(ii,)>&J, (v,) =m J (ii) 

which yields, with the help of the Euler equation, 

l&[J,(U,)mr (7, ii‘)> J (iii- (?, 6, 12.81 

On the other hand, since ce belongs to I', we have 
_- 

J(ii,)+m (1, ii,>. -II (6,) , ‘f. U, (2.9) 

Passing in (2.9) with help of (2.7) to the upper limit and combining the resulting inequality 

with (2.8), we arrive at the relation 
I!m[J,(U,)-+ 17. iir ] .J(ii~j ,?. ii, 

for any T belonging to I*. The above relation represents the above-mentioned test for the 

G-convergence of functionals /9/. 

Note 5. Proposition 5 substantiates the example discussed above (with help of the 

results of /5/). 

Note 6. The strongest demand in proposition 5 is, that the C-limits of the sequence 

of the functionals J, defined on @+H:'l(Q) be independent of the function V. The condition 

is fulfilledif the coefficients &, satisfy the conditions of /3/ embracing a wide class of 

distributionof the inhomogeneities (in particular the cases of periodic and quasiperiodic 

reinforcement/l,3/). 

Note 7. The case when a partofthe plate I', is acted upon by surface forces z, is 

dealt with completely analogously. If the function gis smooth, then the c-limited problem 

is obtained by replacing the coefficients ~7~~~ in (2.1)- (2.3) by aijki. 

Corollary. When applying Note 1 to plates, we can interpret it as follows: let a pas- 

sage from a composite plate to a homogeneous plate described by the operator L’ be executed 

in some unspecified manner. The necessary and sufficient condition for the fleXuresorelastic 

deformation energies of the initial composite and averaged plate to coincide with the accur- 

acy of the order a(h,R) as ~-+u. under the arbitrary mass forces is, that the operator L' co- 

incides with the operator L constructed above, with the accuracy of up to the terms correct- 

ing the solution, of the order a (h, R). 
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Note 8. In comparing 8, and ii with W, we regard w as the displacements reestablished 

according to the solution of the problem of plate theory m(i?),P=QL over the "hole region Q , 

and based on the kinematic hypotheses used. 

Example. As we have already shown, analytic expressions for the coefficients of the G- 

limited operators /5/ are known for materials with one-dimensional distribution of theinhomo- 

geneities. This enables us to carry out, using the results obtained, a full investigation of 

the multilayer composite plates. We shall quote the results, obtained by direct application 

of the methods given in the present paper. 
For the effective flexural rigidity D of a multilayer plate made of isotropic components, 

we have the formula 
D = hSE/[l2(i-ve)] ss (h3/12) <E&-YE?)) 

where E,,v, are the Young's modulus and Poisson‘s ratio of the components, and E,v are the 

corresponding homogenized characteristics. In the case of plates composed of materials with 

large differences in the values of their moduli, the ratio of the homogenized shear modulus 

G and E is small, and the passage A -L should employ the models which take into account 

the transverse shear of the plate. The coefficients accompanying the functions describing 

the transverse shear are proportional to h5 in the framework of the models of /15/, and can 

have a quantity of the order of D (proportional to ha) even in the case of thin plates(h<l). 
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